Module 1 – Design Codes
- PowerPoint Presentation (45:52): https://youtu.be/T5m9cL7IRto
- Plastic Design Example 1 (5:14): https://youtu.be/nT0hu1TCZTc
- Plastic Design Example 2 (5:38): https://youtu.be/8eoCvYAtWXM
- Capacity Design Example (4:05): https://youtu.be/1rk0YSW0Ai4
Reading
- MacGregor, J. G. (1983). Load and resistance factors for concrete design. In Journal Proceedings (Vol. 80, No. 4, pp. 279-287).
- Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Section 1.6 and Chapter 2
Module 2 – Reinforcing Steel
- PowerPoint Presentation (35:24): https://youtu.be/llCmKatf3gQ
Reading:
- Malvar (1998) – Review of Static and Dynamic Properties of Steel Rebar
- Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Section 3.14 to 3.16
Module 3 – Concrete Mechanics
- PowerPoint Presentation (56:32): https://youtu.be/nZXV5LHOhyg
Reading:
- Kupfer, H., Hilsdorf, H. K., & Rusch, H. (1969, August). Behavior of concrete under biaxial stresses. In Journal Proceedings (Vol. 66, No. 8, pp. 656-666).
- Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Section 3.1 to 3.5 and 3.7 to 3.10
Module 4 – Concrete Time Effects
- PowerPoint Presentation (1:03:02): https://youtu.be/PntYrg0301Y
- Final Example Problem (30:29): https://youtu.be/6u_XSP_QnE4
Reading:
- ACI 209R-92 – Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures
- Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Section 3.6
Module 5 – Confinement of Reinforcement Concrete
- PowerPoint Presentation (22:19): https://youtu.be/p-SNmjDM-NI
- Example 1 (16:41): https://youtu.be/3VJCFsQf-NI
Reading:
- Mander, J. B., Priestley, M. J., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of structural engineering, 114(8), 1804-1826.
- Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Section 3.4
Module 6 – Short Compression Members
- PowerPoint Presentation (27:23): https://youtu.be/u6Qy98S7w1U
Reading:
- Bresler, B., & Gilbert, P. H. (1961, November). Tie requirements for reinforced concrete columns. In Journal Proceedings (Vol. 58, No. 11, pp. 555-570).
- Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Section 11.1, 11.2
Module 7 – Flexure
- PowerPoint Presentation (1:03:08): https://youtu.be/sPxxPCxYWls
- Example 1 (49:52): https://youtu.be/EzkvQEhccLA
- Example 2 (29:07): https://youtu.be/NIP9d0JYSR8
- Example 3 (6:16): https://youtu.be/RkeXf6cfRSE
- Example 4a (16:04): https://youtu.be/AIci9aGpNYQ
- Example 4b (7:53): https://youtu.be/VFEQINQkKtk
- Example 5 (37:16): https://youtu.be/ai0i10U1DRk
Reading:
- Whitney, C. S. (1937, March). Design of reinforced concrete members under flexure or combined flexure and direct compression. In Journal Proceedings (Vol. 33, No. 3, pp. 483-498).
- Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Chapter 4 and sections 9.1 to 9.5
Module 8 – Short Columns
- PowerPoint Presentation (37:29): https://youtu.be/1nr_s5fjsmQ
- Example 1 (48:54): https://youtu.be/pf-guAh6yUI
- Example 2 (44:12): https://youtu.be/fNp8gq0bUzU
Reading:
- Bresler, B. (1960, November). Design criteria for reinforced columns under axial load and biaxial bending. In Journal Proceedings (Vol. 57, No. 11, pp. 481-490).
- Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Chapter 11 (specifically §11.3, 11.4, and 11.7)
Module 9 – Slender Columns
- PowerPoint Presentation (40:42): https://youtu.be/BuCJ06dLzZI
- Example 1 (18:47): https://youtu.be/DtJVlFBu85A
- Example 2 (12:36): https://youtu.be/yGR4vq5XZmo
Reading:
- MacGregor, J. G., & Breen, J. E. (1970). Design of slender concrete columns. In Journal Proceedings (Vol. 67, No. 1, pp. 6-28).
- Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Chapter 11 (specifically §12.1 to §12.4)
Module 10 – Shear
- PowerPoint Presentation (47:28): https://youtu.be/1-gNrOgqTwk
- Example 1 (21:11): https://youtu.be/defGZPmPRSU
- Example 2 (31:42): https://youtu.be/HnazUBvhqe8
Reading:
- Bentz, E. C., Vecchio, F. J., & Collins, M. P. (2006). Simplified modified compression field theory for calculating shear strength of reinforced concrete elements. ACI Materials Journal, 103(4), 614.
- Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Chapter 6
Module 11 – Strut-and-Tie Method
- PowerPoint Presentation (57:34): https://youtu.be/9ywGx5y7r_U
- Example 1 (40:38): https://youtu.be/P0o9Gxj-XFE
Reading:
- Tuchscherer, R. G., Birrcher, D. B., & Bayrak, O. (2011). Strut-and-tie model design provisions. PCI journal, 56(1), 155.
- Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Chapter 17
Module 12 – Column Shear
- PowerPoint Presentation (33:02): https://youtu.be/fY1ghDBjK_0
Reading:
- Priestley, M. N., Verma, R., & Xiao, Y. (1994). Seismic shear strength of reinforced concrete columns. Journal of structural engineering, 120(8), 2310-2329.
- Park, Y. J., & Ang, A. H. S. (1985). Mechanistic seismic damage model for reinforced concrete. Journal of structural engineering, 111(4), 722-739.
- Ghee, A. B., Priestley, M. N., & Paulay, T. (1989). Seismic shear strength of circular reinforced concrete columns. Structural Journal, 86(1), 45-59.
- Sezen, H., & Moehle, J. P. (2004). Shear strength model for lightly reinforced concrete columns. Journal of Structural Engineering, 130(11), 1692-1703.
Module 13 – Shear Walls
- PowerPoint Presentation (43:17): https://youtu.be/CGFk07G7sGI
Reading:
- Cardenas, A. E., Hanson, J. M., Corley, W. G., & Hognestad, E. (1973). Design provisions for shear walls. ACI Journal, 70(3), 221-230.
- Usta, M., Alhmood, A., Carrillo, J., Cladera, A., Laughery, L., Pujol, S., Puranam, A., Rautenberg, J., Sezen, H., Sneed, L., & To, D. (2019). Shear Strength of Structural Walls Subjected to Load Cycles. Concrete International, May 2019, 42-48.
- Daniel, J. I., Shiu, K. N., & Corley, W. G. (1986). Openings in earthquake-resistant structural walls. Journal of Structural Engineering, 112(7), 1660-1676.
- Puranam, A., Wang, Y., & Pujol, S. (2018). Estimating Drift Capacity of Reinforced Concrete Structural Walls. ACI Structural Journal, 115(6), 1563-1574.
Module 14 – Bond and Anchorage
- PowerPoint Presentation (54:52): https://youtu.be/oqcSnWYMv5s
Reading:
- Jirsa, J. O., Lutz, L. A., & Gergely, P. (1979). Rationale for suggested development, splice, and standard hook provisions for deformed bars in tension. Concrete International, 1(7), 47-61.
- Darwin, D. (2005). Tension development length and lap splice design for reinforced concrete members. Progress in Structural Engineering and Materials, 7(4), 210-225.
- Canbay, E., & Frosch, R. J. (2005). Bond strength of lap-spliced bars. ACI Structural Journal, 102(4), 605.
- Treece, R. A., & Jirsa, J. O. (1989). Bond strength of epoxy-coated reinforcing bars. ACI Materials Journal, 86(2), 167-174.
Module 15 – Instant Design
- PowerPoint Presentation (37:57): https://youtu.be/ZalkYRT-SOg