Module 1 – Design Codes

Reading

  • MacGregor, J. G. (1983). Load and resistance factors for concrete design. In Journal Proceedings (Vol. 80, No. 4, pp. 279-287).
  • Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Section 1.6 and Chapter 2

Module 2 – Reinforcing Steel

Reading:

  • Malvar (1998) – Review of Static and Dynamic Properties of Steel Rebar
  • Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Section 3.14 to 3.16

Module 3 – Concrete Mechanics

Reading:

  • Kupfer, H., Hilsdorf, H. K., & Rusch, H. (1969, August). Behavior of concrete under biaxial stresses. In Journal Proceedings (Vol. 66, No. 8, pp. 656-666).
  • Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Section 3.1 to 3.5 and 3.7 to 3.10

Module 4 – Concrete Time Effects

Reading:

  • ACI 209R-92 – Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures
  • Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Section 3.6

Module 5 – Confinement of Reinforcement Concrete

Reading:

  • Mander, J. B., Priestley, M. J., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of structural engineering, 114(8), 1804-1826.
  • Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Section 3.4

Module 6 – Short Compression Members

Reading:

  • Bresler, B., & Gilbert, P. H. (1961, November). Tie requirements for reinforced concrete columns. In Journal Proceedings (Vol. 58, No. 11, pp. 555-570).
  • Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Section 11.1, 11.2

Module 7 – Flexure

Reading:

  • Whitney, C. S. (1937, March). Design of reinforced concrete members under flexure or combined flexure and direct compression. In Journal Proceedings (Vol. 33, No. 3, pp. 483-498).
  • Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Chapter 4 and sections 9.1 to 9.5

Module 8 – Short Columns

Reading:

  • Bresler, B. (1960, November). Design criteria for reinforced columns under axial load and biaxial bending. In Journal Proceedings (Vol. 57, No. 11, pp. 481-490).
  • Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Chapter 11 (specifically §11.3, 11.4, and 11.7)

Module 9 – Slender Columns

Reading:

  • MacGregor, J. G., & Breen, J. E. (1970). Design of slender concrete columns. In Journal Proceedings (Vol. 67, No. 1, pp. 6-28).
  • Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Chapter 11 (specifically §12.1 to §12.4)

Module 10 – Shear

Reading:

  • Bentz, E. C., Vecchio, F. J., & Collins, M. P. (2006). Simplified modified compression field theory for calculating shear strength of reinforced concrete elements. ACI Materials Journal, 103(4), 614.
  • Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Chapter 6

Module 11 – Strut-and-Tie Method

Reading:

  • Tuchscherer, R. G., Birrcher, D. B., & Bayrak, O. (2011). Strut-and-tie model design provisions. PCI journal, 56(1), 155.
  • Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design. 7th Edition. Hoboken, NJ: Pearson Education. – Chapter 17

Module 12 – Column Shear

Reading:

  • Priestley, M. N., Verma, R., & Xiao, Y. (1994). Seismic shear strength of reinforced concrete columns. Journal of structural engineering, 120(8), 2310-2329.
  • Park, Y. J., & Ang, A. H. S. (1985). Mechanistic seismic damage model for reinforced concrete. Journal of structural engineering, 111(4), 722-739.
  • Ghee, A. B., Priestley, M. N., & Paulay, T. (1989). Seismic shear strength of circular reinforced concrete columns. Structural Journal, 86(1), 45-59.
  • Sezen, H., & Moehle, J. P. (2004). Shear strength model for lightly reinforced concrete columns. Journal of Structural Engineering, 130(11), 1692-1703.

Module 13 – Shear Walls

Reading:

  • Cardenas, A. E., Hanson, J. M., Corley, W. G., & Hognestad, E. (1973). Design provisions for shear walls. ACI Journal, 70(3), 221-230.
  • Usta, M., Alhmood, A., Carrillo, J., Cladera, A., Laughery, L., Pujol, S., Puranam, A., Rautenberg, J., Sezen, H., Sneed, L., & To, D. (2019). Shear Strength of Structural Walls Subjected to Load Cycles. Concrete International, May 2019, 42-48.
  • Daniel, J. I., Shiu, K. N., & Corley, W. G. (1986). Openings in earthquake-resistant structural walls. Journal of Structural Engineering, 112(7), 1660-1676.
  • Puranam, A., Wang, Y., & Pujol, S. (2018). Estimating Drift Capacity of Reinforced Concrete Structural Walls. ACI Structural Journal, 115(6), 1563-1574.

Module 14 – Bond and Anchorage

Reading:

  • Jirsa, J. O., Lutz, L. A., & Gergely, P. (1979). Rationale for suggested development, splice, and standard hook provisions for deformed bars in tension. Concrete International, 1(7), 47-61.
  • Darwin, D. (2005). Tension development length and lap splice design for reinforced concrete members. Progress in Structural Engineering and Materials, 7(4), 210-225.
  • Canbay, E., & Frosch, R. J. (2005). Bond strength of lap-spliced bars. ACI Structural Journal, 102(4), 605.
  • Treece, R. A., & Jirsa, J. O. (1989). Bond strength of epoxy-coated reinforcing bars. ACI Materials Journal, 86(2), 167-174.

Module 15 – Instant Design